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A GEOMETRICAL MODEL OF BRITTLE FRACTURE UNDER CREEP* 

A.A. VAKUL??NKO and V.YA. KREXNOVICH 

A geometric model is proposed for the microstructure of a material in a 
latent stage of fracture under creep. The model, based on results of an 
experimental study of fracture under creep, results in fractal geometry: 
a set equal to the union of all micropores has a fractional Hausdorff 
dimensionality that depends on the material and its testing conditions. 

The mechanism of the latent stage of brittle fracture under creep is well-known,including 
as it does the formation, growth, and coalescence of microcavities that resultintheevolution 
of macrocracks which also separate the specimens into parts /l/. Under brittle fracture 
conditions the typical shape of the microcavities is micropores whose dimensions in different 
directions are quantities of the same order /2, 3/. Such fracture processes are extremely 
stochastic; in particular, micropores in specimens identical from the macroscopic viewpoint 
being tested under identical conditions and distributed differently. 

To describe the latent fracture stage under creep conditions, a scalar damage parameter 
/4, 5/ is used below. At the microlevel this parameter characterises the "disintegration" 
of the material microstructure which is the result of the formation, growth and coalescence 
of micropores. The relative change in the specimen density, which usually does not exceed 
l-2%, is the fundamental estimate of material disintegration at the microlevel /6/. However, 
tests measuring the magnitude of the change in material density at a certain time of the creep 
process are inadequate for verifying the theory of fracture. Because of this, as a rule, the 
verification is performed according to data on the time to specimen macrofracture (its 
separation into parts) /2, 3/, which indeed underlie the construction of a geometrical model 
of brittle fracture. It has been shown 12, 3/ that the times to macrofracture under identical 
external conditions change from speciment to specimen, thereby reflecting the stochastic 
nature of the material microstructure. 

1. According to the usual representations of the mechanics of a continuous medium /7/, 
if the specimen is separated into domains (or subvolumes A,(k =i,Z,...,M)), whose dimensions 
are much less than the specimen dimensions and much greater than the dimensions of thematerial 
microinhomogeneity at a certain time of the process, the fracture processes in each of the 
subvolumes are independent of analogous processes in the other subvolumes. In conformity 
with the noted brittle fracture mechanism under creep, the probability of fracture of each 
subvolume Ak under given external conditions is determined uniquely by the value of the damage 
parameter o(Ak) (k-1.2, . ..M) of this subvolume. 

To describe the connection between specimen fracture and fracture of the individual 
subvolumes, we follow /8/ and use the "weakest link" principle: the fracture of a certain 
domain occurs if and only if its most defective part is fractured. In the case of fracture 
because of micropore cumulation, this principle means that the subvolume is fractured because 
of its most disintegrated part. In conformity with this, the damage parameter @(A,) of the 
subvolume A,(k = 1,2,...N) equals the greatest of the values O(X) for all points x in the 
subvolume A&: 

To determine o(x) we use the physical, nature of this parameter. Disintegration appears 
at the macrolevel in the form of a residual change in volume, whose fundamental role for cold 
"athermal" plasticity processes was established in /Q/. Since the residual change in volume 
in creep processes is very much more significant, it is natural to take a function of the 
relative change in volume e, as the damage parameter. The simplest and physically most 
intelligent formulas to describe brittle fracture under creep can be obtained when using the 
expression /4/ 

0 =ln(i +&,a), ~"=(dv - dvo)/dvx, 11.2) 

where 8,s is the inelastic part of 8,. dv is the body volume element at a certain time of the 
process, and dv, is the same volume element at the initial time. For small e$((ays)P< 1) o E,P, 
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but at the microlevel eyP can also not be small. 
By virtue of the stochastic nature of brittle fracture, the field o(x) varies in a random 

manner from subvolume to subvolume. We will estimate the expectation CO), of the damage for 
subvolumes of a certain fixed dimension a. 

The quantity to>, depends on the material, the external conditions (the magnitudes of 

the applied tensile force and temperature) and the times of action of these externalconditions. 

If the material and external conditions are fixed, then to>, is determined just by thetime. 

To estimate (Oja we divide the whole specimen into subvolumes of linear dimension a. 

The total number of such subvolumes AI is large, the fracture processes occurring therein 
are independent, and with high accuracy to>, agrees with the arithmetic mean of the sub- 

volume by the law of large numbers, i.e., 

Since damage in the farm of micropores is accumulated in an irreversible manner during 

brittle fracture, then for any a the <o>~ depends monotonically on the time t. This means 

that <CO>, uniquely determines the quantity t which in turn uniquely determines CO), for 

any linear dimensions B, therefore, <w)~ is a function of (eja. The form of this function 

certainly depends on the material, the external conditions, etc. 

The relative change in the specimen volume is small (as already mentioned, it reaches 

l-2%), and consequently, we can confine ourselves to linear terms in the expansion of <o,p 

in (o)a. Since fracture processes are consi'dered such that the inquality w (ApI > 0, is 

always satisfied, then for CO:~= 0 for all subvolumes AiT(h= 1,2,...,M) @(Ah-)=0 and there 

is no damage in the specimen. In this case, for any other linear dimension fi the condition 
'o'R: 0 is also satisfied. It hence follows that the linear terms in the expansion of <e>,; 

in terms of Co)= take the form 

<60F == c{p,a)tw>, (1.3) 

There is no "isolated" length in the theory of continuous media (with the exception of 

a moment theory of such a medium), consequently, the values of all the dimensionless com- 

binations of the body characteristics, in particular, should be independent of whatever units 

these characteristics are measured in. The passage to a unit of length h times small takes 

a over into ha and (CO), into fo)ha and the scale invariance noted results in the equality 

e (h&ha) = e (@,a) for any positive h, B,a. If we set h =a+ in this equality, where the 

quantity a is measured in a certain system of unity, we obtain 

c (B? a) = Cl(B), e, (Bf = c (6, i) (1.4) 

Substituting (1.4) into (1.3) we have 

(O>fi =c,(B/a) Cc+>, (1.5) 

For any positive nUmber r with azi and b= r we obtain from expression (1.5) that 

(w>,=~~(r)(w>~. Setting r-b and I=% here, we have relationships from which after sub- 

stitution into (1.5) and later reduction by CO>, we obtain c1 (fi) =i et (@a) a, (a). Hence after 

substituting fi=$,a=E; the functional equation Cl($) = Cl(?) e, (51 follows. As is known /lo/, 

the solution of this equation has the form e,($=nS and since n=@i!z then for constant A 

and s to)0 = Aas, c (t% 4 = (B/aY (1.6) 
It has been shown /5/ that when the initial specimen is partitioned into 1 subvolumes, 

the values of <e>, diminish by a factor of 11/n , where n is a constant for given stress and 

temperature levels. 
The parameter n and B are related as follows: s=3in. In fact, if a subvolume of linear 

dimension 0 and volume approximately equal to p" is divided into subvolumes of any other 

linear dimension a (and a volume approximately equal to as), then, the number of SubvOhmeS 

of dimension a being obtained equals approximately @la)". Therefore, the equalities to)R=I'in, 

CO& = (BlaP <e)a' hold, and it follows from (1.3) and (1.6) that 8=3/n. 

2. To construct the geometrical model of the set p which is a union of all micropores 

of the specimen, we introduce its volume V, as a natural characteristic of this set. The 

direct determination of VN is associated with attempts to measure the density, which were 

inadequate, as was mentioned above. we estimate V,, by taking into account that the fundamental 

contribution to V, is from the inelastic part cy, i.e., 

V, = 5 ~~P(x)dv (2.1) 

v 
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From relationship (1.2) we have e,"=?-i, and for small a,P the approximation EVPro 

is valid. The quantity eVp is small on the average for the whole specimen, consequently, 

we replace e,P by e (x) in (2.1) and we write it as follows: 

V,,+(x)dv .(2.2) 

Y 

To estimate V, we separate the specimen of volume v into Mu identical parts (subvolumes) 

of the linear dimension a and volume VI%, respectively. In conformity with the approach 

taken in the mechanics of a continuous medium, the field o(x) within each subvolume Ar (k = 

1, 2, . .( M,) can be considered homogeneous. It then follows from (1.1) that o(x)= o(A,J for 

x E Air and we hence have 

Taking (1.7) into account, we obtain CC,, is a constant) 

v&(a) = c,vc?, s=3/0 (2.3) 

According to the analysis of experimental data performed in /5/, n>l and, therefore 

O<s<3, which implies an infinitesimal decrease in VP (a) as a -0 accordingtothe relation- 

ship (2.3). 
The concept of a Hausdorff measure is introduced for the geometrical description of a 

set of the type ~1 (see /ll/, say). 
We recall that the finite set x~,x~,....Q is called on a-mesh of the set B if any 

point from B differs by not more than a>0 from one of the points xi(l < i g k). For the 

very same set there exist a-meshes from a different number of points. We let N,(B) denote 

the numer of points in that one of the a-meshes for B in which the total number of points 

is minimal. 
It turns out that the relationship N,(B)=C@ is satisfied asymptotically for bodies 

of non-zero volume, where the quantity C, is proportional to the volume. For smooth surfaces 
N, (B) ‘v C&L-~, where the quantity C, is proportional to the surface area, while for segments of 

curves N,(B) =C,a, where the quantity C, is proportional to the curve length. Extending these 

three cases, for N, (B)EC~CL-~ it is natural to call the quantity y the dimensionality of the 

set B (or the Hausdorff dimensionality), and the coefficient C, the Hausdorff measure of 

the set B. These concepts can be defined even in the case of an arbitrary asymptotic N,(B) 

/ll/. 
In a-mesh terms, the estimate of the volume is the total volume of the a-neighbourhoods 

of all points of this a-mesh, i.e., Cra3N, (p), where C, is a constant. Equating this ex- 

pression to the ,right side of (2.3), we obtain 

N,(p) = const.as-3 (3.4) 

It follows from (2.4) that the set p has a fractional Hausdorff dimensionality equal to 
y = 3 - 3/n. 

As is seen from the table, the quantity y depends very much on the material. For the 
very same material, the values of y grows for an unchanged temperature T as t!le stress 0 

decreases. The value of T noticeably influences the magnitude of this growth. 

C-k-V [3], T = 748 K 
848 K =I kg/mm2 22 r2= 8 

Y 0.24 &6 :824 1.32 i"39 2.22 
C--Cr-v-M0[3], T=848K T = 753 K 
G, kg/mm2 20 14 

A1--2s [i 
18 0.41 d1 0. 8 0.30 

Y 1.30 1.32 1.42 1.82 1.94 2.14 

The micropore concentration /6/ is sometimes presented as a material damage character- 

istic in experimental works studying the microstructure of material during fracture because 

of creep. In this model the concentration is proportional to N,(p), where a is the greatest 
micropore dimension distinguishable in a given experiment. By virtue of (2.4), the con- 
centration equals const.~-~. Therefore, knowing the concentration for two different (L (different 
enlargements), we obtain the invariant characteristics y and const, describing fracture under 
creep. 

3. A large number of models describing crack growth during the brittle fracture of solid 

deformable bodies exists /12/. In this paper the brittle fracture of metals during creep, 
which occurs under elevated temperature conditions (~0.5 the melting point) and reduced 
stresses with respect to the yield point at a given temperature is considered. The time to 
macrofracture (boy separation into parts) is here quite long (measured in years) and the main 
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part of the time of the fracture process is occupied by the latent fracture stage. The time 

this stage terminates is taken approximately as the time to specimen macrofracture. Separation 

of the fracture process under creep into two stages for metal bodies, the latent and the 

mainline crack propagation stage is customary for the theory of brittle fracture under creep 

/7/. In this paper the latent fracture stage is considered during which the random formation 

and development of micropores occurs over the specimen body. 

At the macrolevel the stochastic nature of such fracture appears as the spread in the 

macrocharacteristics of the fracture process during creep and, in particular, as the time to 

macrofracture. The spread in the time to macrofracture is the more significant the lower the 
level of the given tensile stress for an invariant temperature /2/. A Wibull distribution 

of the time to macrofracture is proposed to describe this spread for sufficiently low stress 

levels /5, 7/. It follows from the results of creep strength tests under the above-mentioned 

conditions that the volume of samples of the time to macrofracture does not exceed 20 values 

for fixed stresses and temperature. TWO parameters of the Weibull distribution of the time 
to macrofracture in the form I-L'KIJ(--A&~) it is the time and A", n are distribution parameters) 
are found by the maximum-likelihood method /5/. 

The model developed in this paper enables us to determine the shape parameter n from the 

results of investigating microcavities in the plane of the specimen middle transverse section, 

made at a time close to the time of termination of the latent specimen creep stage /13/. The 

dependence of the relative number of micropores whose diameter is greater than or equal to 

a, on a is established by the concentration of the micropores in the plane of the section. 

To a first approximation this dependence is approximated by the power function C&-b, where 

Co and b are constants. Sing b is the dimensionality of the set which is the intersection 

of the set TV and a plane in three-dimensional space, then b=pfZ- 3 /11/, and therefore 
y --- b + 1. It follows from (2.4) that n = 3/(3--v), and We hence have n = 3i(:! -b). 

The second parameter of the time-to-facture distribution An is determined for known n 

by the maximum likelihood method from the relationship 

where K is the volume of samples, and ti is the i-th value of the time to macrofracture under 

fixed external conditions. For known n the value of A0 is more exact than when both 

parameters are unknown and found from one sampling /14/. 

It follows from the above that the geometrical model of brittle fracture under creep 

provides a basis, to a first approximation, for utilizing the results of microstructural 

micropore investigations to describe the spread in the time to macrofracture of metal speci- 
mens. 
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